
ShadowBlock: A Lightweight and Stealthy Adblocking Browser
Shitong Zhu

University of California, Riverside
shitong.zhu@email.ucr.edu

Umar Iqbal
The University of Iowa
umar-iqbal@uiowa.edu

Zhongjie Wang
University of California, Riverside

zwang048@ucr.edu

Zhiyun Qian
University of California, Riverside

zhiyunq@cs.ucr.edu

Zubair Shafiq
The University of Iowa

zubair-shafiq@uiowa.edu

Weiteng Chen
University of California, Riverside

wchen130@ucr.edu

ABSTRACT

As the popularity of adblocking has soared over the last few years,
publishers are increasingly deploying anti-adblocking paywalls that
ask users to either disable their adblockers or pay to access content.
In this workwe propose ShadowBlock, a newChromium-based ad-
blocking browser that can hide traces of adblocking activities from
anti-adblockers as it removes ads from web pages. To bypass anti-
adblocking paywalls, ShadowBlock takes advantage of existing
filter lists used by adblockers and hides all ad elements stealthily in
such away that anti-adblocking scripts cannot detect any tampering
of the ads (e.g., absence of ad elements). Specifically, ShadowBlock
introduces lightweight hooks in Chromium to ensure that DOM
states queried by anti-adblocking scripts are exactly as if adblocking
is not employed. We implement a fully working prototype by modi-
fying Chromium which shows great promise in terms of adblocking
effectiveness and anti-adblocking circumvention but also more effi-
cient than the state-of-the-art adblocking browser extensions. Our
evaluation on Alexa top-1K websites shows that ShadowBlock
successfully blocks 98.3% of all visible ads while only causing minor
breakage on less than 0.6% of the websites. Most importantly, Shad-
owBlock is able to bypass anti-adblocking paywalls on more than
200 websites that deploy visible anti-adblocking paywalls with a
100% success rate. Our performance evaluation further shows that
ShadowBlock loads pages as fast as the state-of-the-art adblocking
browser extension on average.

CCS CONCEPTS

• Information systems→ Browsers; Online advertising; • Se-
curity and privacy→ Usability in security and privacy.

KEYWORDS

Adblocking; Anti-adblocking; Browser Modification

ACM Reference Format:

Shitong Zhu, Umar Iqbal, Zhongjie Wang, Zhiyun Qian, Zubair Shafiq,
and Weiteng Chen. 2019. ShadowBlock: A Lightweight and Stealthy Ad-
blocking Browser. In Proceedings of the 2019 World Wide Web Conference
(WWW’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3308558.3313558

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313558

1 INTRODUCTION

The deployment of adblocking technology has been steadily in-
creasing over the past few years. PageFair reports that more than
600 million devices globally use adblockers as of December 2016 [1].
Many reasons contribute to the popularity of adblocking. First, lots
of websites show flashy and intrusive online ads that negatively
impact user experience. Second, the pervasiveness of targeted or
personalized ads has incentivized a global ecosystem of online track-
ers and data brokers, which in turn raises concerns for user privacy.
Third, the inclusion of numerous advertising and tracking scripts
causes excessive website bloat resulting in slower page loads. The
rise of adblocking has jeopardized the ad-powered business model
of many online publishers. For example, U.K. publishers lose nearly
3 billion GBP in revenue annually due to adblocking [2].

In response to adblocking, many publishers have deployed
JavaScript-based, client-side anti-adblockers to detect and cir-
cumvent adblockers. An anti-adblocker typically consists of two
components: detection and reaction. For adblocker detection,
common practices include checking the absence of ad elements and
proactively injecting bait ad elements [33]. Both practices exploit
the fact that adblockers make observable changes to the DOM by
either blocking relevant requests or hiding DOM elements directly
[37]. As a result, these DOM changes can be perceived by the
detection part of anti-adblockers through invocation of JavaScript
APIs such as getElementById(). After adblocker detection, the
reaction component can perform different subsequent operations.
It can be aggressive paywalls that prevent users from accessing
the content or even switching ad sources.

Adblockers have addressed anti-adblockers in one of the follow-
ing three ways: (i) blocking the JavaScript code of anti-adblockers
using filter lists [29], (ii) disrupting anti-adblocker code based on
program analysis [39], and (iii) hiding the trace of adblocking to
fool anti-adblockers [37]. The first countermeasure is currently
adopted by the adblocking community using filter lists such as
Anti-Adblock Killer and Adblock Warning Removal [29]. However,
the coverage and accuracy of these filter list is lacking. Our manual
evaluation on 207 websites using anti-adblockers with visible
reactions (i.e. warning message or paywall), only less than 30% of
them are correctly identified by Adblock Warning Removal [4] or
Anti-Adblock Killer [5]. This is likely due to the manual nature
of filter list curation and maintenance which is cumbersome and
error-prone. The second countermeasure of rewriting JavaScript
to deactivate anti-adblockers is prone to false positives causing
site breakage with unacceptable user experience degradation [39].
The third countermeasure of hiding the trace of adblocking, as

2483

https://doi.org/10.1145/3308558.3313558
https://doi.org/10.1145/3308558.3313558

implemented in prior work [37], is not stealthy because it injects
new JavaScript which is easily detectable by anti-adblockers.

In this paper, we aim to completely hide the traces of adblocking
in a stealthy manner by going deep into the browser core. This is
analogous to the rootkits in the OS kernel where user applications
are unable to detect the presence of a malicious process [36]. Since
the browser core is at a lower level (more privileged), it is in theory
capable of hiding the states of adblockers from the anti-adblockers
while presenting an ad-free view to the user. Specifically, since
anti-adblocker is implemented as client-side JavaScript, it can only
access web-page states through a number of predefined Web APIs
including the ones used to probe the the presence/absence of ad
elements. These APIs are standardized by W3C and implemented
eventually by web browsers. ShadowBlock hooks any JavaScript
API that can potentially distinguish the difference before and after
hiding ad elements, and assures no information about the element
hiding can be leaked through such API.

We tackle three major challenges in designing and implement-
ing ShadowBlock. First, existing adblockers’ model of blocking
ad-related URLs (e.g., scripts, iframes, images) does not fit well in
our requirement of presenting the same exact DOM view as if no
adblocker is employed. For example, if a DOM element is not even
retrieved, ShadowBlockwould have no way to fake its size, dimen-
sion, and other properties. Second, given that the Web APIs suite
and the rendering process implemented in modern web browsers
are highly complex and intertwined, there may exist unexpected
channels that leak information about adblocking deployment. To
achieve stealthy adblocking, we need to ensure that no such channel
discloses differentiable information about our element hiding action
in a conclusive way. Third, modern web browsers make significant
efforts in improving their page loading and rendering performance.
As we develop ShadowBlock on open-sourced Chromium, we
need to minimize the overhead it incurs during the page load pro-
cess.
Contributions. We summarize our key contributions as follows.

(1) We design a well-reasoned solution where we present two
different views to anti-adblockers and users. On one hand, ad
elements are never directly blocked (so they remain visible to
anti-adblockers); on the other hand, these ads are stealthily
hidden from users.

(2) We reuse the rules from filter lists used by adblocking
browser extensions to element hiding decisions. On top of ex-
isting lists that are community-backed and have been widely
adopted, we replicate 98.3% of their ad coverage according
to manual inspection over Alexa Top 1K websites, with less
than 0.6% breakage rate.

(3) We design and implement a fully functional prototype which
is open-sourced at the time of publication. We evaluate the
effectiveness of ShadowBlock prototype on 207 websites
with visible anti-adblockers. We pick real anti-adblockers
with different trigger mechanisms and of different complex-
ity. All of them are successfully evaded by our new adblocker
design.

(4) Our performance evaluation of ShadowBlock shows that
it loads pages comparably fast as Adblock Plus on average,
in terms of Page Load Time and SpeedIndex.

2 BACKGROUND AND RELATEDWORK

2.1 Adblockers And Filter Lists

Mechanisms. Adblockers rely on manually curated filter lists to
identify ads on web pages. EasyList and EasyPrivacy are two most
widely used filter lists to block online ads and trackers, with about
71000 and 15000 rules [8], respectively. These lists consist of two
types of rules which are basically regular expressions. One of them
is HTTP rules that block HTTP requests to URL addresses that are
known to serve ads. For example, the first filter rule below blocks all
third-party HTTP requests to amazon-adsystem.com, preventing
any resource on this domain from being downloaded. The other
type is HTML rules, which generally hides HTML elements that
are identified as ads. For example, the second filter below hides all
HTML elements with ID promo_container on wsj.com.

||amazon-adsystem.com^$third-party
wsj.com###promo_container

It is noteworthy that HTML rules are mostly only introduced
to complement HTTP rules while dealing with first-party text ads.
This is because these text ads are directly embedded into the HTML
itself with no associated additional resource loads, making it in-
evitable to be included while the browser downloads the web page.
Otherwise, HTTP rules are preferred as they prevent ad resources
from being loaded in the first place, saving unnecessary network
traffic and avoiding execution of ad-related scripts to speed up page
loading and rendering.
Limitations. A group of volunteers that maintain filter lists carry
out the manual process to add new rules, correct and remove er-
roneous or redundant rules all based on informal feedback from
users [7]. Due to its crowd-sourced nature, this laborious effort
faces challenges from both the completeness and soundness. In
the context of adblocking, the former results in missed ads and
the latter often translates to site breakage or malfunction [23]. At
the same time, as adblockers gain their popularity rapidly (11% of
global Internet population is blocking ads as of December 2016 [1]),
online publishers are also fast adopting countermeasures against
adblockers that we summarize below.

2.2 Countermeasures Against Adblockers

Concealing ad signatures. First, online advertisers can bypass
rules on filter lists by concealing the signatures these lists use to
identify ads. At a high level, this line of countermeasures attempts
include first-party advertising and rotation of ad serving domains.
First-party advertising exploits the fact that many rules on filter
lists are designed to block ads from being loaded from third-party
servers. Instead, ads are served from the same domain of the web
page hosting them and their nature as ads is concealed as normal
content [11]. However, adblockers can easily hide any HTML el-
ement on a web page by applying HTML rules that are crafted
to target elements based on any combination of their CSS/HTML
properties. In other words, any CSS selectors used to create and/or
locate ads elements, can also let adblockers identify and hide these
elements in turn.

Domain name rotation is another tactic for obfuscating advertis-
ing content. It relies on ad rotation networks that serve ads from

2484

amazon-adsystem.com
wsj.com

frequently-changing, or even automatically generated [38] domain
names, which overwhelms volunteers that maintain the filter lists
so they are hard to keep pace with the rule updates. This can result
in, however, the indifferent blocking of all third-party resources on
websites that show such ads [9]. By only whitelisting legitimate
scripts that support core functionalities, any possible ads or tracking
JavaScript are prevented from running, leaving no chance for load-
ing domain rotating ads. Moreover, AdBlock Plus recently launched
its Anti-Circumvention Filter List [3] that specifically counter "cir-
cumvention ads", including ads adapting the two countermeasures
above.
Deploying anti-adblockers. Second, many publishers choose
to deploy anti-adblocker JavaScript code to battle the rise of ad-
blocking. Specifically, such client-side scripts consist of two main
components, trigger that detects the presence of adblockers by
checking whether ads or bait elements are still present, and reaction
that can display warning messages and/or simply report the results
to a remote server [33, 39]. Prior work [29] showed that 686 out of
Alexa top-100K websites detect and visibly react to adblockers on
their homepages. Even worse, these visible ones only account for
less than 10% of all anti-adblockers [39]. Zhu et al. [39] showed that
among Alexa top-10k websites, 30.5% are countering adblockers in
some form, with most of them being silent reporting. In summary,
because of their flexibility and ease of deployment, anti-adblockers
are considered the most widely used countermeasure against ad-
blockers adopted by online publishers.

2.3 Countermeasures Against Anti-adblockers

Dedicated anti-adblocking filter lists. As a response, ad-
blockers attempt to circumvent anti-adblockers by blocking their
JavaScript code snippets, whitelisting bait scripts/elements, or hid-
ing warning notifications. To this end, adblockers once again rely
on manually curated filter lists such as Anti-Adblock Killer [5]
and Adblock Warning Removal [4]. These lists either trick anti-
adblockers’ trigger so they cannot detect adblockers, or mute their
reaction component to prevent responses after successful detection.
/kill-adblock/js/function.js$script
@@||removeadblock.com/js/show_ads.js$script
ilix.in,urlink.at,priva.us###blockMsg

For example, the first HTTP rule above blocks the code snippets con-
taining implementation of an anti-adblocking library KillAdBlock,
and the second whitelists a bait script file named show_ads.js that
is used to detect adblockers. The third HTML rule hides the warning
message with ID blockMsg issued by the associated anti-adblocker.
However, our manual evaluation (§4) shows that these lists tar-
geting anti-adblockers are generally ineffective. Only less than
30% of the anti-adblocking warning messages can be removed by
the state-of-the-art filter lists. This is again partly because of the
crowdsourcing nature of these lists, and also the rising popularity
of third-party anti-adblocking services that deploy sophisticated
techniques dedicated for detecting/circumventing adblockers [33].
Disrupting anti-adblocker code. Other than the filter lists that
have been officially adopted by adblockers, there are also research
efforts for detecting and evading anti-adblockers. One solution
to measure the anti-adblockers is to perform program analysis

techniques that automatically determine if a script functions for
anti-adblocking purposes. Such analysis can be static that is based
on syntactic and structural features extracted from JavaScript code,
and utilizes machine learning approaches to classify the code from
ground-truth-labeled training data [29]. It can also be dynamic that
captures JavaScript behavior at runtime by collecting and analyzing
differential execution trace with the adblocker turned on and off
[39]. After successfully pinpointing the critical conditions that are
used by anti-adblockers to assert/react against the presence of
adblockers, one can choose to rewrite these conditions to prevent
the anti-adblockers from functioning. This approach is generally
intrusive (patching Javascript can be tricky and cause breakage)
and easy to evade. Indeed, the overall success rate of this strategy
is shown to be only less than 80%.
Hiding adblockers. Besides disrupting the functionalities of anti-
adblockers, researchers also have proposed away to hide the trace of
using adblockers, or known as stealthy adblocking. In [37], Storey et
al. created a shadow copy of the DOM that anti-adblockers operate
on before any adblocking actions take place, and then redirects all
JavaScript APIs (e.g. getElementById()) that can be used to detect
the presence of ad elements to the copy instead of the original
DOM. However, this so-called rootkit-style stealthy adblocker has
inherent drawbacks. First, unless it lives in browser core and with
significant engineering efforts, the underlying DOM mirroring and
propagation are difficult to be complete in all cases. This is especially
problematic in the context of web browsing as any site breakage
causes unacceptable user experience degradation. Second, evenwith
a perfect implementation, maintaining a live copy of complicated
data structures such as DOM poses a prohibitively high overhead
onto the rendering performance of modern web browsers. Given
that modern browsers place significant emphasis on performance,
heavy operations like such at runtime are generally not acceptable.

3 SHADOWBLOCK

In this section, we first provide an overview of ShadowBlock’s
architecture. We then discuss ShadowBlock’s two building blocks:
(1) the identification of ad elements by translating filter list rules to
per-element hiding decisions and (2) the concealment of our hiding
actions. Finally, we summarize the modifications we make in the
relevant modules of Chromium.

3.1 ShadowBlock Overview

Figure 1 illustrates ShadowBlock’s architecture. It consists of two
sub-systems: one translates rules from filter lists and use them
for identifying ad elements in DOM to hide; the other hooks nec-
essary points in Chromium to ensure that the hiding actions are
transparent to the trigger/detection component of anti-adblockers.
Recall from Section 2.1 that filter lists contain tens of thousands of
rules that either block HTTP requests to fetch ad resources or hide
HTML ad elements. To prevent exposing adblocking actions to anti-
adblockers, we need to hide the changes in DOM or other states (e.g.
resource loads) introduced by adblocking because these changes
can be detected by anti-adblockers through JavaScript APIs such
as getElementById(). In order to do so, we first allow all HTTP
requests to proceed, then mark any element that results in ads, and
subsequently hide the marked elements. It is important that we

2485

Ad elements
hiding & concealing

Ad elements
identification

Ads-free web page

Anti-adblocking
notifications

avoided

Filter lists

Web page

Modified Chromium

Hiding action
concealing

Element hiding

Figure 1: Architectural overview of ShadowBlock

allow these elements to be retrieved so when the anti-adblocking
script queries the state of the element, ShadowBlock will be able
to generate valid responses (e.g., dimension of the element).

3.2 Identifying Ad Elements

Next, we explain our approaches for marking different types of
ad elements. In general, there are two types of elements: (1) those
that are statically embedded in the HTML, and (2) those that are
dynamically created by JavaScript. First, some ad elements are
statically embedded in the HTML, including ad images, iframes,
media files (i.e. video and audio). Such ad elements can be typically
identified bymatching against the HTML rules on filter lists. Second,
ad scripts usually create new ad elements that display advertising
content. These dynamically created elements should be identified,
marked, and hidden.
Ad elements loaded statically. ShadowBlock does not need
to do anything special for such elements. Ad filter lists al-
ready contain extensive rules that cover them. For example, the
rule ||googlesyndication.com/safeframe/ in EasyList blocks
the HTML file from https://tpc.googlesyndication.com/safeframe/
1-0-23/html/container.html on site cnbc.com, which prevents a con-
tainer frame used by Google Ads from being loaded. To hide such
an ad element, ShadowBlock needs to first identify the iframe
element with the blocked URL as its source attribute and then hide
it.

Alternatively, Easylist rules may hide ads based on element prop-
erties (e.g., element id). We simply reuse these rules to match ele-
ments in the page, and mark them accordingly.
Ad elements generated dynamically by ad scripts. There are
generally two cases. The easy and the hard. For the easy case, the
dynamically generated ads may contain URLs or ids that already
show up on Easylist. This allows us to directly mark them as ads
using very much the same strategy as mentioned above.

For the hard case, the dynamically generated elements are not
on Easylist. This is because it is assumed that ad scripts are blocked
upfront and therefore there is no need to block the elements gen-
erated by them. In ShadowBlock, in contrast, we need to allow
ad scripts to load and execute, which mandates us to track such
elements.

To identify elements dynamically created by ad scripts, we need
to attribute each element to the script that created it. More formally,

we can define this process of attribution as tracking the data
provenance of HTML elements using taint analysis. Note that there
are in general two types of element creation that can be initiated
by a script: (1) control-flow-based creation, in which the script
directly invokes JavaScript API (e.g. createElement(tagName))
and only propagates data from itself into the new element; and
(2) data-flow-based creation, in which the script uses data from
sources other than itself into the new element (e.g. createElement
(fetchTagNameFromServer())). Dynamic taint analysis [31] can
accurately track the data provenance through taint propagation for
both types. Simply put, taint analysis involves taint source (where
data comes from), taint sink (where data ends), and propagation
policies that define how that tainted data are propagated through
the program execution. In our case, all data derived from an
identified ad script as "tainted" (i.e., data downloaded through
an ad URL, or retrieved/generated by an ad script), then such
data can be tracked standard taint analysis propagation policies
for JavaScript (e.g., [27]). Finally we will hide any tainted HTML
elements (i.e. taint sinks).

Unfortunately, such dynamic taint analysis at runtime usually
incurs significant overhead for web browsing [31]. In addition,
we argue that the cases where taint analysis will be required
are limited. Specifically, even if ad elements take dynamically
fetched data, e.g., createElement(fetchTagNameFromServer()),
they are most likely created by ad scripts. This is sufficient for us
to mark the element and hide it (irrespective of what data are actu-
ally fetched from the server). The reasoning is that if we consider
extension-based adblockers as our baseline, the dynamically cre-
ated element wouldn’t even exist in the first place (as the script as
a whole would have been blocked). Based on the above, we devise
a simple technique which we call execution projection using the call
stack information extensively (which are used for various other
purposes as well [30, 32]). At a high level, we maintain an “execu-
tion stack" that keeps track of what scripts are being executed at
any given time point, and mark an element as ad if there is any ad
script in the stack when the element is being created. For example,
consider a simple ad script ad_loader.js in Code 1.

1 var ad_img = document.createElement("img");

2 ad_img.src = "https :// some_ad_publisher.com/ad.jpg";

3 document.body.appendChild(ad_img);

Code 1: Example ad script ad_loader.js

In this example, at the time of the image element creation, ad_-
loader.js would be at the top of the execution stack because it is
being executed.

After attributing elements to ad scripts, which are identified
using filter lists, we can mark all ad elements and hide them accord-
ingly. We illustrate this projection/marking process in Figure 2. In
more complex cases, there can be many scripts in the executing
stack, because code in one script can invoke functions in other
scripts, and so on. More importantly, ad scripts can invoke non-ad
libraries (e.g. jQuery) to create ad elements so the top script in
stack at the time of element creation is not necessarily ad script. To
tackle this challenge, we need to scan the entire execution stack. If
there is any ad script in the execution/invocation chain, Shadow-
Block should mark the element being created as ad. This is because
any script (ad-related or not) invoked by a known ad script should

2486

https://tpc.googlesyndication.com/safeframe/1-0-23/html/container.html
https://tpc.googlesyndication.com/safeframe/1-0-23/html/container.html
cnbc.com

Ad Scripts

Non-ad
Scripts

Create
(e.g. via createElement())

Execution Stack

(bottom to top)

Elements marked as ad

Non-ad
Scripts

Execution Stack

(bottom to top)

Elements marked as
non-ad

Figure 2: Execution projection formarking script-created ad

elements

never have been executed in the first place, given that adblocking
extensions simply block the whole ad script altogether.

Note that our approximate solution does not handle a special
case when an element is created via a JavaScript API that gets
overridden (hooked) by an ad scripts . Since client-side JavaScript
is allowed to override (i.e. injecting code containing a callback to
its own) arbitrary JavaScript API functions (e.g. createElement())
with its own version, we would see ad script in the stack when an
element is being created via the API overridden by an ad script. In
this case, we may mistakenly mark a non-ad element as ad when
the overriding ad script does not propagate any data into the newly
created element. To tackle this issue, at the time of element creation,
we would need to further check whether the code injected by the
overriding ad script alters the element. If it alters the element then
we mark the element as ad, and non-ad otherwise.

1 var original = document.createElement;

2 document.createElement = function (tag) {

3 new_elem = original.call(document , tag);

4 report_statistic_to_server(new_elem);

5 return new_elem;

6 };

Code 2: API overriding with the element intact

1 var original = document.createElement;

2 document.createElement = function (tag) {

3 new_elem = original.call(document , tag);

4 ad_elem = change_to_ad_elem(new_elem);

5 return ad_elem;

6 };

Code 3: API overriding with the element altered

3.3 Stealthily Hiding Ad Elements

After identifying ad elements, ShadowBlock needs to stealthily
hide them so as to not leaving its trace to anti-adblockers. Next,
we discuss how we realize such stealthiness through CSS property
access API hooking.
Choice of hiding mechanism. We first need to decide how to
hide ad elements within Chromium. Given the complexity of mod-
ern web browsers and API standards, we can hide an HTML el-
ement in several different ways. To better understand different
hiding mechanisms, we illustrate Blink’s rendering process in Fig-
ure 3 [16]. Blink’s rendering path, from parsing an HTML file to the
pixel display on user’s screen, can be summarized in the following
phases.

(1) Parse flat HTML and CSS in plain-text to DOM and CSS
Object Model (CSSOM) in tree structure.

(2) Combine DOM and CSSOM to Render Tree, which cap-
tures all the visible DOM content and all the CSSOM style
information for each node.

(3) Paint the rendered pixels to user’s display according to Ren-
der Tree.

DOM

CSSOM

Render Tree Rendered
Page

Paint

C
om

bine

Parse

Parse

Figure 3: Rendering Path for Blink

In theory, each of these 3 phases contain APIs/modules that
we can leverage for hiding an HTML element (or in other words,
preventing it from being rendered). We outline different possible
strategies to hide HTML elements below:

(1) DOM/CSS layer: (i) remove the element from DOM; (ii) set
the element’s style to display:none, visibility:hidden
or opacity:0

(2) Render Tree layer: remove the LayoutObject (i.e. a styled
node) from Render Tree

(3) Paint layer: prevent the region in pixels associated with the
element from being painted

Note that generally, the higher-layer (i.e. closer to DOM/CSS layer)
we tweak around in the hierarchy, more engineering effort is re-
quired for ensuring its stealthiness against anti-adblockers, while
narrower gap we have to bridge for translating the identified ad
HTML elements to the data structure corresponding to that layer
(e.g. CSS properties for DOM/CSS layer, PaintBlock for Paint layer
etc.). In contrary, the lower-layer (i.e. closer to Paint layer) our
modifications reside, fewer unexpected channels there are that can
potentially leak the hiding activities, but at the same time more
engineering efforts are required for translating the identified ad
elements to that layer’s data structure.

After investigating different possibilities, we find the CSS prop-
erty visibility:hidden achieves the most suitable trade-off for
our objective. It persists in phase (1), functions in phase (2) of the
rendering path, and eventually affects both Render Tree and paint-
ed/rendered page in phase (2) and (3). On one hand, visibility is
a property associated with every HTML element so we can easily
identify after marking its effective element as ad, without the need
of further tracing. On the other hand, unlike display:none, it by
design preserves the space taken up by the hidden element so it
causes no side-effect to the layout of the document, minimizing the
impacted points that need to be hooked for covering the hiding ac-
tion. Figure 4 shows the visual difference between their respective
effects. Compared to opacity:0 that also preserves the occupied
space, visibility is a categorical CSS property instead of numeri-
cal as opacity so its implementation in Chromium is considerably
less complex, simplifying our hooking logic as well.

2487

Box 1 Box 3

(a) display:none

Box 1 Box 3

(b) visibility:hidden

Figure 4: Comparison of toggling different CSS properties

(Box 2 is hidden)

Hooking for concealing hiding actions. After hiding the target
ad element by setting its visibility CSS property value [21] to
hidden, we next need to cover any traces that result from this
change of value and can be detected by anti-adblockers. Since anti-
adblocking scripts are client-side JavaScript code, which can only
access the change of states happened in the page through JavaScript
Web APIs [22], we search through the source code of Chromium,
analyze relevant modules and locate the following three categories
of APIs that are impacted by the visibility CSS property:

• CSS/Style-related: changing a CSS property value im-
mediately affects its own return value to JavaScript APIs
via getComputedStyle(). We hook this value to visible
to fool anti-adblockers. Fortunately, for our case, setting
visibility:hidden preserves the space the element
occupies, so it does not collapse the page layout
nor affect other relevant CSS properties such as
offsetHeight/offsetWidth.

• Event-related: flipping the visibility property prevents
an element from receiving some DOM events, such as
onfocus. Since anti-adblockers can leverage these events
as a side-channel to infer the real visibility of an element,
we hook relevant modules in Chromium so hidden elements
can receive these events just like visible elements.

• Hit-testing-related: another effect of setting visibility:
hidden is Blink treats elements with it as inapplicable to
Hit Testing, which checks if an element is clickable by users
in their viewpoints. This removes the hidden element from
return values to APIs like elementFromPoint(), which can
potentially be used by anti-adblockers to differentiate hidden
elements from visible ones. We hook relevant modules in
Blink to cover it.

Since all JavaScript APIs, to our best knowledge, directly or indi-
rectly rely on themodules above to determine an element’s visibility,
we ensure the completeness of our hooking against potential in-
formation leakage to client-side anti-adblockers. It is worth noting
that to avoid affecting existing visibility:hidden CSS property
value, in Chromium we create a new visibility:fake-visible
value that completely mimics what visibility:hidden behaves,
except for the points that are intentionally hooked. Moreover, since
visibility is a CSS property that inherits from parent node to
child nodes, we can make the identified ad elements invisible to

user’s display even though we only identify the top-most element
as ad according to filter lists.

3.4 Chromium Modification

Next, we describe our modifications to Chromium for implementing
ShadowBlock. We start with a brief introduction of Chromium’s
architecture, then move to the instrumentation we use for iden-
tifying ad elements, and lastly discuss the modules we leverage
for hiding identified ad elements and hook for eliminating the
traces resulted from the hiding action. We implement the proto-
type of ShadowBlock with 1307 LOC (1265 LOC addition and 42
LOC deletion) in C++ on top of Chromium 1. Note that we re-use
SubresourceFilter [18] and libadblockplus [10] for parsing
filter lists with production-level robustness.
ChromiumArchitecture. Chromium’s rendering engine is called
Blink and its JavaScript engine is called V8. Blink [6] is responsible
for fulfilling the rendering path shown in Figure 3, in which its core
module renders all HTML elements and handles their visibility
CSS properties we use for hiding ad elements. V8 [19] handles the
compilation and execution of all JavaScript code, including the ad
scripts ShadowBlock needs to identify and anti-adblocker scripts
that intend to detect our hiding action over ad elements. Blink
has a bindings module to handle interactions between rendering
and JavaScript execution. Rendering related script tasks are passed
through bindings module. For example, JavaScript API calls such as
getComputedStyle() are handled through the bindings module.
Instrumentation for identifying ad elements. As discussed in
Section 3.2, there are three types of ad elements ShadowBlock
needs to identify.

First, for ad elements generated by ad scripts, we
rely on execution projection. In Chromium, we leverage
blink::SourceLocation
::Capture to capture the full v8::v8_inspector::V8StackTrace
that includes the entire JavaScript call stack2 at any given time
point. It serves as the underlying stack tracing mechanism for V8’s
debugger/inspector, and has therefore been optimized with low
overhead [20].

Second, we instrument the constructor of blink::Element class
in Blink, which captures the earliest point of creation event for all
HTML elements. Because of V8’s single-threading nature, we can
safely associate the current stack trace to the element creation
event, and scan the stack to match the scripts in it against filter
lists. If it is a match, we then mark the element as ad. Addition-
ally, we instrument the DispatchWillSendRequest event in both
blink::FrameFetchContext and blink::WorkerFetchContext
to intercept the point when an ad script loads another script, and
mark the loaded script as ad script. By adding such loaded ad scripts
to a set, we match the stack trace against them as well at element
creation, ensuring we can mark all ad elements.

Third, for elements loaded with resources that match rules in the
filter lists, we intercept the AttributeChanged event in blink::

1We open source our implementation at https://github.com/seclab-ucr/ShadowBlock
to allow reproducibility as well as help future extensions by the research community.
2We admit that there are cases where asynchronous tasks are not correctly captured by
the default V8 call stack trace. However, we argue this incompleteness only translates
to very limited number of missing ads according to our manual evaluation in Section
4.2.

2488

https://github.com/seclab-ucr/ShadowBlock

Element and match the URL against filter lists, if it is a match
we mark this element as ad. For element hiding rules, we adopt
libadblockplus [10], a C++ wrapper library around the core func-
tionality of Adblock Plus to parse filter lists and generate the CSS
selectors for matching ad elements for a particular domain. Then,
we mark the ad elements that match the generated CSS selectors
by calling ContainerNode::QuerySelectorAll().

Since many web pages are dynamic due to JavaScript execu-
tion over time, we also need to monitor attribute changes of each
element. For this purpose, we instrument the AttributeChanged
event andmatch any element with newly changed attributes against
CSS selectors from HTML rules. We mark an element as ad if it is
a match, or un-mark the element if this element has been marked
but it is not matched this time. Note that in order for minimiz-
ing the number of matches needed to perform, we conduct the
first batch match (via QuerySelectorAll()) after the load event
of DOM is fired, and then match elements upon their attribute
changes. This design choice leaves a short period of time (few
milliseconds) between page navigation and load DOM event in
which ads are displayed. We make this trade off to reduce the
overhead incurred by QuerySelectorAll(). In comparison, ad-
blocking extensions such as Adblock Plus inject CSS rules when
document.readyState turns interactive [26], which happens
before the load event. However, it is important to note that most
ads in current web ecosystem are loaded in an asynchronous man-
ner and are unlikely to appear before the load event in first place.
Stealthy modifications for hiding ad elements. As mentioned
earlier, we leverage visibility CSS property to hide identified ad
elements by creating a new fake-visible enumerate and visually
hide elements with this enumerate, as if it behaves as hidden. In the
meantime, we hook relevant modules in both Blink and its bindings
with V8 to ensure the stealthiness of our hiding action. More specifi-
cally, for eliminating traces accessible by CSS/Style-related APIs, we
hook CSSComputedStyleDeclaration::GetPropertyCSSValue
in Blink and force return visible to queries about hidden elements.
For event-related APIs, we hook Element::IsFocusableStyle()
and other conditions that determine if an element can receive events.
Lastly, we hook ComputedStyle::VisibleToHitTesting() so ad
elements are still regarded "visible" from the viewpoint perspective
of Blink. In principle, our hooking guarantees that the identified
ad elements are invisible to user’s display as pixels on screen but
appear as visible to APIs accessible to client-side JavaScript.

4 EVALUATION

We evaluate ShadowBlock in terms of its (1) stealthiness against
anti-adblockers, (2) ad coverage, and (3) performance as as com-
pared to adblocking extensions.

4.1 Stealthiness Analysis

Takeaway: ShadowBlock has 100% success rate against anti-
adblockers whereas state-of-the-art anti-adblocking filter lists have
only 29% success rate.
Experimental Setup. To evaluate the stealthiness of Shadow-
Block, we use previously reported [39] 682 websites with visual
anti-adblockers. We manually analyze these websites and find that

Table 1: Breakdown of stealthiness analysis

Tool Notification Ad switching Crypto-mining

Total 201 5 1
ShadowBlock 201 (100%) 5 (100%) 1 (100%)
Filter lists 59 (29%) 1 (20%) 0 (0%)

207 of them still use visible anti-adblockers. For each website, we
perform stealthiness comparison as follows.

(1) Open a website with four Chromium instances simultane-
ously. Each instance has a different profile configuration:
(i) no modification or extension; (ii) Adblock Plus exten-
sion with EasyList only; (iii) Adblock Plus extension with
EasyList, Anti-Adblock Killer list, and Adblock Warning Re-
moval list; and (iv) ShadowBlock using EasyList.

(2) Scroll the page down to the bottom and wait for 30 seconds
after the load event has fired to ensure complete page load.

(3) Capture the full-page screenshots (including content after
scrolldown) for all browser instances.

(4) Manually inspect the screenshots: compare (i) and (ii) to
determine if the page has visual anti-adblocker. If so, further
compare (ii) and (iii) to check whether anti-adblocking filter
lists evade the anti-adblocker, compare (iii) and (iv) to check
whether ShadowBlock achieves the evasion.

Results. In addition to visible anti-adblocking notifications, we
also consider ad switching and crypto-mining reactions from web-
sites. Table 1 compares ShadowBlock with anti-adblocking filter
lists for each of these anti-adblocking reactions. "Notification" refers
to websites that show anti-adblocking notifications such as pay-
walls. "Ad switching" refers to websites that switch their ad sources
upon detection of adblockers. "Crypto-mining" refers to the web-
sites that load crypto-mining scripts to mine crypto-currencies on
detection of adblockers [28]. We note that ShadowBlock has 100%
success rate as compared to 29% success rate of anti-adblocking
filter lists.
Case Studies. Below we discuss a few interesting examples of anti-
adblockers that ShadowBlock successfully handles but filter lists
do not. Note that besides visible anti-adblocking notifications, we
also include one example discovered in the wild that uses non-visual
countermeasure against adblocker users.
Ad source switching. On detecting adblockers, some websites switch
their ad sources to sources that are currently not blocked by filter
lists. Figure 5a and 5b show an example from golem.de. Since Shad-
owBlock stealthily hides the original ads, the ad source switching
script is never triggered. Therefore, unlike what Figure 5b shows
in which adblocking extensions fail to remove the replaced ad,
ShadowBlock successfully hides it.
Silent reporting. Besides visible reaction, anti-adblockers can also
choose to silently report the adblocking status to back-end servers
to collect adblocking statistics. For example, varmatin.com uses
Code 4 to place a bait with keywords on EasyList to track adblock-
ing users and report the status to back-end server. ShadowBlock
handles such cases and these statistics are never reported.

2489

golem.de
varmatin.com

(a) Original ad

(b) Replaced ad

Figure 5: Ad switching behavior on golem.de

1 function checkAds () {

2 if ($(document.getElementById('adsense ')).css('display '

) !== 'none' && $('#myadsblock ').length === 1) {

3 dataLayer.push({

4 'DimAdBlock ': 'Unblocked '

5 });

6 window.adblockdetected = false;
7 } else {

8 dataLayer.push({

9 'DimAdBlock ': 'Blocked '

10 });

11 window.adblockdetected = true;
12 }

13 }

Code 4: Code snippet on varmatin.com of silent anti-

adblocker

Crypto-currencymining. Somewebsites have started to employ cryp-
tojacking as a response to adblocking [28]. To this end, websites use
anti-adblockers to detect use of adblockers and load scripts to mine
a crypto-currency on user’s browser. Mining crypto-currencies
consumes processing power on user’s machine. For example,
knowlet3389.blogspot.com blocks organic content on detection
of adblockers and asks users of allow crypto-currency mining for
monetization instead. Code 5 shows the crypto-currency mining
script on knowlet3389.blogspot.com.

1 setInterval(function () {

2 try {

3 var a3 = document.getElementById('AdSense3 ');

4 if (a3.offsetHeight < 33 || a3.clientHeight < 33) {

5 throw "Fuck U AdBlock!";

6 }

7 } catch (err) {

8 miner.start(CoinHive.IF_EXCLUSIVE_TAB);

9 }

10 }, 5487);

Code 5: Code snippet on knowlet3389.blogspot.com for mining

crypto-currency

4.2 Ad Coverage Analysis

Takeaway: ShadowBlock achieves 97.7% accuracy, with 98.2% re-
call and 99.5% precision in blocking ads on Alex top-1K websites.
Experimental Setup. For ad coverage analysis, we use Shadow-
Block on Alexa top-1K sites and measure its accuracy in terms of

(a) Adblock Plus (b) ShadowBlock

Figure 6: Minor visual breakage caused by ShadowBlock

true positive (TP), false negative (FN), true negative (TN), and false
positive (FP). We define TP, FN, TN, and FP as:

TP: All ad elements on a page are correctly hidden.
FN: At least one ad element on a page is not hidden.
TN: No non-ad element on a page is incorrectly hidden.
FP: At least one non-ad element on a page is incorrectly hidden.

For each website, we perform ad coverage comparison as follows.
(1) Open a website with three Chromium instances simultane-

ously. Each profile has a different profile configuration: (i)
no modification or extension; (ii) Adblock Plus extension
with EasyList; and (iii) ShadowBlock using EasyList.

(2) Scroll the page down to the bottom and wait for 30 seconds
after the load event has fired to ensure complete page load.

(3) Capture the full-page screenshots (including content after
scrolldown) for all browser instances.

(4) Manually inspect the screenshots: compare (i), (ii) and (iii)
to determine if the website has any FPs or FNs.

Results. Table 2 shows the breakdown of our manual analysis.
We evaluate results in terms of TPs, FNs, TNs, and FPs. Note that
we are able to perform our analysis on 943 out of Alexa top-1000
websites. The remaining websites failed to properly load primarily
due to server-side errors (e.g., 404).
False Positive Analysis. From Table 2, we note that Shadow-
Block has only 0.5% false positive rate. However, they are still
critical as they might lead to user experience degradation. We fur-
ther investigate false positives to diagnose their root cause.

theatlantic.com is an example of false positive. Figure 6 shows
that ShadowBlock incorrectly hides organic content at the bottom
of the page. On further investigation, we find that an ad script
ads.min.js loads another script script.js that hooks JavaScript
API methods. In this case, even when a non-ad element is being
processed it would go through same hooked JavaScript APImethods.
Since our ad marking heuristics check for the presence of ad scripts
on execution stack it will incorrectly mark such elements as ads.
In comparison, extension-based adblockers block the request for
downloading ads.min.js in the first place, so the hooking script
never gets executed. As discussed in Section 3.2, we can deal with

Table 2: Breakdown of ad coverage analysis

Event TP FN TN FP

Count 926 (98.2%) 17 (2.8%) 938 (99.5%) 5 (0.5%)

2490

golem.de
varmatin.com
knowlet3389.blogspot.com
knowlet3389.blogspot.com
knowlet3389.blogspot.com
theatlantic.com

this issue by checking whether or not the overridden API alters the
elements and hiding the elements altered by ad scripts.
False Negative Analysis. From Table 2, it can be seen that Shad-
owBlock has only 2.8% FNs. We further investigate FNs and iden-
tify that they are again caused by corner cases not covered by
ShadowBlock and that they can be handled by performing taint
analysis.

sohu.com is an example of false negative. On further investiga-
tion, we find that sohu.com uses a non-ad script (not on Easylist)
to load both ads and non-ad content on the page. Since Shad-
owBlock only attributes elements created by ad scripts as ads,
it misses dual-purpose scripts. It’s noteworthy that this should
be a rare case, as it is contrary to the common practice of us-
ing dedicated third-party scripts to create and load ad elements
that most ad publishers exercise today. These publishers normally
deploy third-party ad scripts because they have a complex bid-
ding system and prefer dominant control over their ad modules

1 "resource": {

2 "type": "text",

3 "text": "Guangzhou , Audi TT 82.2K RMB off",

4 "md5": "",

5 "click": "http :// dealer.auto.sohu.com /882054/ promotion/

article?id =7360579",

6 "imp": [],

7 "clkm": [],

8 "adcode": "Guangzhou , Audi TT 82.2K RMB off",

9 "itemspaceid": "15770"

10 }

Code 6: JSON snippet on sohu.com for loading ads (translated

from Chinese)

We can tackle this issue by implementing the taint analysis ap-
proach discussed in Section 3.2. Specifically, Code 6 shows the
snippet of a JSON file on sohu.com containing parameters required
to create ad elements. In this case, we will need to first mark the
JSON object as ad-related, or tainted, and whenever any piece of the
data derived from it propagates to any element field (e.g. the URL
in JSON’s click field is used to set an element’s src attribute), we
mark the element as ad. In comparison, extension-based adblockers
intercept the network request to load such ad JSON based on its
URL in the first place, which effectively prevents the resulting ad
HTML element from being created.

Similarly, we observe FNs on youtube.comwhere ShadowBlock
is unable to hide all video ads. Our manual analysis shows that
youtube.com leverages the Media Source Extensions (MSE) API
[25] to load video segments through AJAX requests as byte streams.
Unlike the standard HTML video tag that loads videos as HTTP
requests, youtube.com loads ad videos in Blob objects [24] which
are downloaded by JavaScript on the fly. ShadowBlock cannot
identify video ads loaded as Blob objects, because both ad and non-
ad objects are generated by the same non-ad script and assigned
to a single HTML video element. Unlike our strategy that relies
on differentiating ad scripts, extension-based adblockers block the
AJAX requests to fetch ad video segments based on their URLs,
which achieves the goal of ad removal. As discussed earlier, taint
tracking can be used to address this challenge.

Even through we show that tainting is the ultimate solution to
the FN cases encountered during our evaluation, we argue that

it a comprehensive taint engine poses prohibitively high runtime
overhead in the context of web browsing [27, 31]. More importantly,
our evaluations have shown the sufficient accuracy of Shadow-
Block with the lightweight stack-based execution approximation,
as discussed in Section 3.2.

4.3 Performance

Takeaway: we use two web performance metrics: Page Load Time
(PLT) and SpeedIndex. ShadowBlock speeds up page loads by
5.96% in terms of median PTL and 6.37% in terms of median SpeedIn-
dex, on Alexa top-1000 websites.
Page LoadTime (PLT). PLT has been the de-facto standardmetric
for measuring web performance. PLT can be computed by timing
the difference between certain browser events using the Navigation
Timing API [12]. In order to minimize variations introduced by
the initial network setup (e.g., establishing TCP connection with
server), we measure the time between responseStart [15] and
loadEventStart [14] events.
SpeedIndex. PLT does not capture a real user’s visual perception
of webpage rendering process. For example, two pages A and B
can have exactly the same PLTs, but page A can have 95% of its
visual content rendered by a certain time point while page B has
only rendered 30%. From the user perception perspective, page A
outperforms page B but they are equally good in terms of PLT.
To address this issue, SpeedIndex [17] was proposed to capture
the visual progress of above-the-fold content, i.e., content in the
viewport without scrolling. Unlike PLT, SpeedIndex measures how
visually complete a webpage looks at different points during its
loading process. Specifically, the page loading process is recorded as
a video and each frame is compared to the final frame, for measuring
completeness. SpeedIndex is computed using the following formula:

SpeedIndex =

∫ tend

tbeдin
1 − VisualCompleteness

100
,

where tbeдin and tend represent the time points of the
start (i.e. responseStart event in our case) and end (i.e.
loadEventStart event in our case) of video recording, respectively.
VisualCompleteness measures the difference of the color histogram
for each frame in the video versus the histogram at frame tbeдin ,
and compares it to the baseline (difference of histogram at tbeдin
and tend) to determine how "complete" that video frame is.

We emulate DSL network condition by throttling Chromium
[13] to 4 Mbps downlink bandwidth and 5ms RTT latency for all
responses to best mitigate measurement volatility across different
browser instances. 3 For each site, we first load the webpage to
generate its resource cache, then we re-load the webpage 10 times
and average the measured PLT and SpeedIndex for each page load.
Note that our warm-up strategy ensures most of the static non-ad
resources are cached, while ad resources dynamically generated by
JavaScript execution are not. This is intended, because we want to
minimize the variability introduced by irrelevant factors such as
processing non-ad network traffic.

3We also run another configuration with 750 Kbps downlink bandwidth and 100ms
RTT latency to emulate a regular 3G condition [13] and observe similar median trends
for both PLT (DSL -5.96% vs 3G +0.30%) and SpeedIndex (DSL -6.37% vs 3G -7.07%)
with respect to Adblock Plus.

2491

sohu.com
sohu.com
sohu.com
sohu.com
youtube.com
youtube.com
youtube.com

Overhead Ratio

CD
F(

x)

0.00

0.25

0.50

0.75

1.00

-50.00% -37.50% -25.00% -12.50% 0.00% 12.50% 25.00% 37.50% 50.00%

ShadowBlock/ABP (PLT) ShadowBlock/Vanilla (PLT)
ShadowBlock/ABP (SpeedIndex) ShadowBlock/Vanilla (SpeedIndex)

Figure 7: CDF for performance metrics

We compute relative ratio of PLT/SpeedIndex across two differ-
ent configuration pairs (A) ShadowBlock and vanilla Chromium;
and (B) ShadowBlock and Adblock Plus (EasyList + Anti-blocking
lists), which are denoted as ConfA and ConfB , respectively.

PLTGroupA − PLTGroupB
PLTGroupB

SpeedIndexGroupA − SpeedIndexGroupB
SpeedIndexGroupB

Overall, both PLT and SpeedIndex show that ShadowBlock
speeds up page load time as compared to not only Adblock Plus
but also vanilla Chromium. In comparison to Adblock Plus, Shad-
owBlock speeds up page loads by 5.96% in terms of median PTL
and 6.37% in terms of median SpeedIndex. In comparison to vanilla
Chromium, ShadowBlock speeds up page loads by 1.03% in terms
of median PTL and 5.22% in terms of median SpeedIndex.

The distributions of PLT and SpeedIndex in Figure 7, also con-
firm this trend. We surmise that ShadowBlock’s speed up with
respect to Adblock Plus is because ShadowBlock’s in-browser
modifications, versus Adblock Plus’s JavaScript-level implemen-
tation, inherently incur less overhead without the necessity of
communications between browser core and extension code. For the
speed up with respect to vanilla Chromium, it can be explained
because ShadowBlock avoids the rendering and painting work
for hidden ad elements.

5 DISCUSSIONS AND LIMITATIONS

Hiding instead of blocking. As discussed in Section 3.3, Shad-
owBlock is designed to visually hide ad elements. Compared to
extension-based adblockers that prevent ad resources from loading,
ShadowBlock’s hiding strategy is inherently limited in two ways.
First, ShadowBlock loads the ads and then hides them, thus does
not save any network bandwidth. Second, it allows ad resources to
load and ad-related scripts to execute, thus exposes users to online
tracking. However, we argue that ShadowBlock can complement
other tracker blocking approaches that obfuscate and anonymize
user-identifiable data [34, 35] which do not require blocking ad
requests or stopping script execution.

Completeness of implementation. As discussed in Section 3.2,
a sufficiently complete yet lightweight taint analysis engine is re-
quired to tackle all the FN cases we encounter during ad element
identification. However, given the adequate accuracy and practi-
cal runtime overhead level, we consider our execution projection
technique a sufficient and necessary simplification of taint tracking
conceptually.
Adversary from publishers. Modern websites enforce strong
isolation among different scripts running in the same document.
Violating such policies would normally raise substantial awareness
to owners of other scripts or the website itself. This isolation also
helps establish the assumption that ad scripts should never inter-
act with non-ad elements in the same page. However, As soon as
the publishers become aware of our approach, they might attack
ShadowBlock by pro-actively breaking this assumption to cause
collateral damage. For example, an ad script can intentionally mod-
ify an attribute of a non-ad element without changing its semantics
(e.g. by changing the text encoding). In this case, if we blindly follow
the taint tracking and mark the element with taint as ads, we might
end up hiding benign elements. To address this challenge, we will
need an equivalence test on the semantics of the cases with and
without tainting.

Alternatively, an adversary may attempt to detect Shadow-
Block. Even though we have closed all normal channels (JavaScript
APIs) from leaking information about the presence of Shadow-
Block. The adversary may still use more extreme means such as
side channels. For instance, if we conduct taint analysis, we slow
down the JavaScript execution and therefore they can potentially
detect ShadowBlock by timing. However, we argue that this will
be extremely challenging if not impossible, because there exist
many browsers with different versions of JavaScript engines. There
are simply too many possibilities if an adversary observes that the
execution is slightly slower (it can even be just a slow machine).

6 CONCLUSIONS

In this paper, we propose ShadowBlock— a Chromium based
stealthy adblocking browser. In addition to blocking ads it hides
the traces of adblocking, making it insusceptible to anti-adblocking.
Compared to the current state-of-the-art adblocking extensions,
that block resources, ShadowBlock allows resources to load and
keeps track of them. Later it hides the loaded resources and fakes
their states to JavaScript APIs used by anti-adblockers. Through
manual evaluation, we find that ShadowBlock (i) achieves 100%
success rate in evading visual anti-adblockers; (ii) replicates 98.2%
of ads coverage achieved by adblocking extensions; and (iii) causes
minor visual breakage on less than 0.6% of the tested websites. In
addition, we evaluate ShadowBlock’s performance and find that it
loadsweb pages as fast as adblocking extensions in terms of SpeedIn-
dex and Page Load Time, on average. In summary, ShadowBlock
constitutes a substantial advancement for building adblockers in-
visible to anti-adblockers and presents an important advancement
in the rapidly escalating adblocking arms race.

ACKNOWLEDGMENTS

This workwas supported in part by the National Science Foundation
under grant numbers 1719147, 1715152, and 1815131.

2492

REFERENCES

[1] The state of the blocked web 2017 Global Adblock Report. PageFair.
https://pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf,
2017.

[2] Uk publishers lose nearly 3bn in revenue annually due to adblocking, 2017.
[3] Abp anti-circumvention filter list. https://github.com/abp-filters/

abp-filters-anti-cv, 2018.
[4] Adblock warning removal list. https://easylist-downloads.adblockplus.org/

antiadblockfilters.txt, 2018.
[5] Anti-adblock killer: Don’t touch my adblocker! https://reek.github.io/

anti-adblock-killer/, 2018.
[6] Blink - the chromium projects. https://www.chromium.org/blink, 2018.
[7] Easylist forum. https://forums.lanik.us/, 2018.
[8] Easylist: Overview. https://easylist.to/, 2018.
[9] Issues with yavli advertising. https://easylist.to/2015/08/19/

issues-with-yavli-advertising.html, 2018.
[10] libadblockplus: A c++ library offering the core functionality of adblock plus.

https://github.com/adblockplus/libadblockplus, 2018.
[11] Native advertising: A guide for businesses. https://www.ftc.gov/tips-advice/

business-center/guidance/native-advertising-guide-businesses, 2018.
[12] Navigation timing api - web apis | mdn. https://developer.mozilla.org/en-US/

docs/Web/API/Navigation_timing_API, 2018.
[13] Optimize performance under varying network conditions | tools for web

developers | google developers. https://developers.google.com/web/tools/
chrome-devtools/network-performance/network-conditions, 2018.

[14] Performancetiming.loadeventstart - web apis | mdn. https://developer.mozilla.
org/en-US/docs/Web/API/PerformanceTiming/loadEventStart, 2018.

[15] Performancetiming.responsestart - web apis | mdn. https://developer.mozilla.org/
en-US/docs/Web/API/PerformanceTiming/responseStart, 2018.

[16] Render-tree construction, layout, and paint. https://developers.google.com/web/
fundamentals/performance/critical-rendering-path/render-tree-construction,
2018.

[17] Speed index - webpagetest documentation. https://sites.google.com/a/
webpagetest.org/docs/using-webpagetest/metrics/speed-index, 2018.

[18] Subresourcefilter in chromium source code. https://cs.chromium.org/chromium/
src/components/subresource_filter/, 2018.

[19] V8 javascript engine. https://v8.dev/, 2018.
[20] V8stacktraceimpl in chromium source code. https://cs.chromium.org/chromium/

src/v8/src/inspector/v8-stack-trace-impl.h, 2018.
[21] visibility - css: Cascading style sheets | mdn. https://developer.mozilla.org/en-US/

docs/Web/CSS/visibility, 2018.
[22] Web apis | mdn. https://developer.mozilla.org/en-US/docs/Web/API, 2018.
[23] Yavli filters issues - easylist forum. https://forums.lanik.us/viewtopic.php?f=64&

t=36091, 2018.
[24] Blob - web apis | mdn. https://developer.mozilla.org/en-US/docs/Web/API/Blob,

2019.

[25] Media source extensions api - web apis | mdn. https://developer.mozilla.org/
en-US/docs/Web/API/Media_Source_Extensions_API, 2019.

[26] preload.js in adblock plus extension that injects css selectors into
web pages. https://github.com/adblockplus/adblockpluschrome/blob/
c742bcc37b459c03bd564aea941ef6f05834e7fd/include.preload.js#L259, 2019.

[27] Q. Chen and A. Kapravelos. Mystique: Uncovering information leakage from
browser extensions. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1687–1700. ACM, 2018.

[28] G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang, Y. Zhang,
Z. Qian, and H. Duan. How you get shot in the back: A systematical study
about cryptojacking in the real world. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 1701–1713. ACM,
2018.

[29] U. Iqbal, Z. Shafiq, and Z. Qian. The ad wars: retrospective measurement and
analysis of anti-adblock filter lists. In Proceedings of the 2017 Internet Measurement
Conference, pages 171–183. ACM, 2017.

[30] U. Iqbal, Z. Shafiq, P. Snyder, S. Zhu, Z. Qian, and B. Livshits. Adgraph: A
machine learning approach to automatic and effective adblocking. arXiv preprint
arXiv:1805.09155, 2018.

[31] R. Karim, F. Tip, A. Sochurkova, and K. Sen. Platform-independent dynamic taint
analysis for javascript. IEEE Transactions on Software Engineering, 2018.

[32] B. Li, P. Vadrevu, K. H. Lee, and R. Perdisci. Jsgraph: Enabling reconstruction
of web attacks via efficient tracking of live in-browser javascript executions. In
25th Annual Network and Distributed System Security Symposium, 2018.

[33] M. H. Mughees, Z. Qian, and Z. Shafiq. Detecting anti ad-blockers in the wild.
Proceedings on Privacy Enhancing Technologies, 2017(3):130–146, 2017.

[34] N. Nikiforakis, W. Joosen, and B. Livshits. Privaricator: Deceiving fingerprinters
with little white lies. In Proceedings of the 24th International Conference on World
Wide Web, pages 820–830. International World Wide Web Conferences Steering
Committee, 2015.

[35] X. Pan, Y. Cao, and Y. Chen. I do not know what you visited last summer: Protect-
ing users from third-party web tracking with trackingfree browser. In Proceedings
of the 2015 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, 2015.

[36] E. Rudd, A. Rozsa, M. Gunther, and T. Boult. A survey of stealth malware: Attacks,
mitigation measures, and steps toward autonomous open world solutions. IEEE
Communications Surveys & Tutorials, 19(2):1145–1172, 2017.

[37] G. Storey, D. Reisman, J. Mayer, and A. Narayanan. The future of ad blocking: An
analytical framework and new techniques. arXiv preprint arXiv:1705.08568, 2017.

[38] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster. Webranz:
web page randomization for better advertisement delivery and web-bot preven-
tion. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 205–216. ACM, 2016.

[39] S. Zhu, X. Hu, Z. Qian, Z. Shafiq, and H. Yin. Measuring and disrupting anti-
adblockers using differential execution analysis. NDSS, 2018.

2493

https://github.com/abp-filters/abp-filters-anti-cv
https://github.com/abp-filters/abp-filters-anti-cv
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://reek.github.io/anti-adblock-killer/
https://reek.github.io/anti-adblock-killer/
https://www.chromium.org/blink
https://forums.lanik.us/
https://easylist.to/
https://easylist.to/2015/08/19/issues-with-yavli-advertising.html
https://easylist.to/2015/08/19/issues-with-yavli-advertising.html
https://github.com/adblockplus/libadblockplus
https://www.ftc.gov/tips-advice/business-center/guidance/native-advertising-guide-businesses
https://www.ftc.gov/tips-advice/business-center/guidance/native-advertising-guide-businesses
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://developers.google.com/web/tools/chrome-devtools/network-performance/network-conditions
https://developers.google.com/web/tools/chrome-devtools/network-performance/network-conditions
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceTiming/loadEventStart
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceTiming/loadEventStart
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceTiming/responseStart
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceTiming/responseStart
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-construction
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-construction
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://cs.chromium.org/chromium/src/components/subresource_filter/
https://cs.chromium.org/chromium/src/components/subresource_filter/
https://v8.dev/
https://cs.chromium.org/chromium/src/v8/src/inspector/v8-stack-trace-impl.h
https://cs.chromium.org/chromium/src/v8/src/inspector/v8-stack-trace-impl.h
https://developer.mozilla.org/en-US/docs/Web/CSS/visibility
https://developer.mozilla.org/en-US/docs/Web/CSS/visibility
https://developer.mozilla.org/en-US/docs/Web/API
https://forums.lanik.us/viewtopic.php?f=64&t=36091
https://forums.lanik.us/viewtopic.php?f=64&t=36091
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/Media_Source_Extensions_API
https://developer.mozilla.org/en-US/docs/Web/API/Media_Source_Extensions_API
https://github.com/adblockplus/adblockpluschrome/blob/c742bcc37b459c03bd564aea941ef6f05834e7fd/include.preload.js#L259
https://github.com/adblockplus/adblockpluschrome/blob/c742bcc37b459c03bd564aea941ef6f05834e7fd/include.preload.js#L259

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Adblockers And Filter Lists
	2.2 Countermeasures Against Adblockers
	2.3 Countermeasures Against Anti-adblockers

	3 ShadowBlock
	3.1 ShadowBlock Overview
	3.2 Identifying Ad Elements
	3.3 Stealthily Hiding Ad Elements
	3.4 Chromium Modification

	4 Evaluation
	4.1 Stealthiness Analysis
	4.2 Ad Coverage Analysis
	4.3 Performance

	5 Discussions and Limitations
	6 Conclusions
	Acknowledgments
	References

